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The motion of an inertial ellipsoid in a creeping linear shear flow of a Newtonian fluid is studied numeri-
cally. This constitutes a fundamental system that is used as a basis for simulations and analysis of flows with
heavy nonspherical particles. The torque on the ellipsoid is given analytically by Jeffery �Proc. R. Soc. London,
Ser. A 102, 161 �1922��. This torque is coupled with the angular-momentum equation for the particle. The
motion is then governed by the Stokes number St=�e�̇l2 /�, where �e is the density of the ellipsoid, �̇ is the
rate of shear, l is the length of the major axis of the ellipsoid, and � is the dynamic viscosity of the fluid. For
low St �the numerical value depends on the aspect ratio of the particle�, the particle motion is similar to the
Jeffery orbits obtained for inertia-free particles with the addition of an orbit drift so that the particle eventually
lies in the flow-gradient plane. At higher St, more drastic effects are seen. For particles oriented in the
flow-gradient plane, the rotation rate increases rather abruptly to half the shear rate in a narrow range of St. For
particles with other orientations, the motion goes from a kayaking motion to rotation around an oblique axis.
It is suggested that, depending on aspect and density ratios, particle inertia might be sufficient to explain and
model orbit drift observed previously at low Reynolds numbers. It is discussed how and when the assumption
of negligible fluid inertia and strong particle inertia can be justified from a fundamental perspective for
particles of different aspect ratios.
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I. INTRODUCTION

Flows in which elongated or platelike particles are sus-
pended in a Newtonian fluid occur in many engineering and
biological systems. To indicate the width of applications, pa-
permaking �1–4�, aerosols �5,6�, coating systems �7,8�, or
particle motion in the respiratory system �9,10� can be men-
tioned. Thus, the motion of elongated particles in different
flow situations are necessary to model �i� the rheology of
such suspensions �11,12� and �ii� the motion and orientation
of individual particles in a flow �3,13–15�. In the second
case, the aim might be, e.g., to understand and develop a
manufacturing process or predict medical consequences.
Note that for particles in gas flows, the density ratio between
the particle and the liquid is typically of the order of 1000. In
water, typical density ratios are 1–10. The present work is
aimed at particles in Newtonian fluids, and the results re-
viewed and cited reflect this restriction.

The basis for such modeling is the motion of single par-
ticles in simplified flow situations. As the modeling ability is
steadily increasing, this research area has noted considerable
attention and many aspects of these motions have been stud-
ied with a wide variety of methods, experimental as well as
numerical �16–26�. Further on, the results necessary to set
the present work in perspective will be summarized in more
detail.

The particular case studied here is an inertial ellipsoid in
linear creeping shear flow. The situation under study is de-
picted in Fig. 1. The ellipsoid is defined by

x2 +
y2

kb
2 +

z2

kc
2 = � l

2
�2

.

Thus, kb and kc are the aspect ratios of the ellipsoid and l a
measure of its size. Primed quantities refer to an inertial
reference frame and quantities without primes refer to a
body-fixed coordinate system. The ellipsoid is put in a shear
flow given by u�= �̇y� where �̇ is the rate of shear. The
orientation of a spheroid �kb=kc� is defined by the angles �
�the angle between the x� axis and the projection of the x axis
on the x�y� plane� and � �the angle between the z� and x
axes�. The Reynolds number based on shear is here defined
as Re�̇= �̇l2 /�, where � is the kinematic viscosity of the fluid.
All analysis in this paper is based on the creeping-flow as-
sumption, i.e., Re�̇=0. Thus, the results are a corner stone
when it comes to phenomenological understanding of mo-
tions of heavy particles at low Re�̇. Furthermore, it will be
argued that, for heavy particles, the assumption of Re�̇=0
can give quantitative agreement up to Re�̇=1 or more for
certain aspects of the particle motion.

Jeffery �27� determined the torque on an ellipsoidal par-
ticle in an unbounded linearly varying Stokes flow �Reynolds
number zero�. He gives analytical expressions for the torque
given the flow, fluid viscosity and lengths of the ellipsoid
axes together with the orientation and angular velocity vector
of the particle. Furthermore, he determined the rotational
motion of light �where light means that particle inertia is
negligible� spheroids by setting the torque to zero and solve
for the angular velocities. He showed that the spheroid un-
dergoes a periodic motion around the vorticity axis �the z�
axis in Fig. 1� in one of an infinite number of closed orbits
�usually called Jeffery orbits� somewhat similar to the mo-
tion of a kayak paddle. His results are routinely used as a
starting point in studies of a fundamental nature and when
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flows with elongated particles are modeled �19,21,22,25,28�.
In a Jeffery orbit, a light spheroid with kb=kc�1 spends

most of the time around �=0 and 	. Periodically, the spher-
oid flips between these two values of 
 and during this flip-
ping, the angle � will vary, unless it is 	 /2. If time is scaled
with �̇, the period and ��t� were obtained by Jeffery �27� as

TJ = 2	� 1

kb
2 + 1�kb, cot � = −

1

kb
cot�2	t

TJ
+ �0� ,

where �0 is a phase defined by the initial orientation. The
relation between � and � is defined by the orbit parameter

C =
1

kb
tan �� 1

kb
2sin2 � + cos2 ��0.5

.

The orbit parameter ranges from 0 to � and the extremes
correspond to constant �=0 and �=	 /2, respectively. Here,
this span is transformed to �0,1� by introducing CB=C / �C
+1�. For light particles in creeping flow �i.e., Re�̇=0, Stokes
flow� the orbit parameter is constant in time and is defined by
the initial orientation of the particle. If the Reynolds number
is nonzero, there are effects of fluid inertia. There are also
effects of the inertia of the particle, which are measured by
the Stokes number, here defined as St=� Re�̇, where �
=�e /� f where �e and � f are the densities of the particle and
fluid, respectively. The effects of fluid and particle inertia
have recently been given considerable attention. Nonzero
particle inertia �17,23,25� �i� gives a drift so that the longest
axis ultimately is in the flow-gradient plane and �ii� increases
the rate of flipping. The orientation drift and decrease of
rotation period is due to the fact that inertia resists decelera-
tion as the main axis of the particle approaches and moves
through the flow-vorticity plane. Furthermore, it has been
shown �22,29� that also weak fluid inertia tends to drift slen-
der bodies to flipping in the flow-gradient plane. The period
of rotation increases with Re�̇ and eventually the particle
ceases to rotate at a critical Re�̇. Similar effects have also
been reported in simulations of buoyant ellipsoids �19�,
where the critical Re�̇ �at which rotation stops� is increased
with an increasing �. Neutrally buoyant particles ��=1, i.e.,
Re�̇=St� have been studied numerically �21,24� and it has
been found that for small Re�̇ a prolate spheroid �kb=kc
=0.5� finally rotates around the minor axis, which then is
aligned with the vorticity axis. At higher Reynolds numbers,

the asymptotical orientation changes drastically and the
spheroid ends up with the major axis aligned with the direc-
tion of vorticity. A full understanding of the effect of fluid
and particle inertia on the orientation and rotation period for
different particle aspect ratios is yet to be established.

In this paper, the torque on an ellipsoid in creeping shear
flow �Re�̇=0� given by Jeffery �27� will be coupled with the
equations of motion of the ellipsoid. The magnitude of par-
ticle inertia will be increased considerably compared to pre-
vious studies and drastic effects are predicted at high St. The
present results are of course relevant in gas flows with small
nonspherical particles �low Reynolds number, high density-
ratio� but it will be argued that it might also be important at
lower density ratios if the aspect ratio is moderate.

We will first study rotation when one axis of the ellipsoid
is fixed and aligned with the vorticity axis ��=	 /2�. This
initial analysis is followed by modeling and analyses of the
full three-dimensional rotation. These sections start with stat-
ing the governing equations and thereafter the results are
presented and discussed briefly. A section with a discussion
on how the results could be verified in a physical experiment
follows. In Sec. V, two specific consequences of the present
results are discussed: �i� implications on particle dynamics in
the Re/St plane and �ii� how particles will migrate when the
shear is combined with gravity/sedimentation. Finally, the
conclusions are summarized.

II. ROTATION AROUND THE VORTICITY AXIS

A. Governing equations

The law of angular momentum for rotation around one
�fixed� axis is Mz= Iz�̈, where Iz is the moment of inertia of
the ellipsoid and dots indicate differentiation with respect to
time. With the nondimensional time being t= t��̇ �t� is the
dimensional time�, the equation of motion for the ellipsoid
rotating around the z-axis, with Jeffery’s expression for Mz,
is found to be

St
kc�kbK + K��

20
�̈ =

1 − kb
2

1 + kb
2�1

2
− sin2 �� − �1

2
+ �̇� �1�

where K=K�kb
2 ,kc

2�, K�=K�kb
−2 ,kc

2kb
−2�, and

K�C1,C2� = �
0

� d�

�1 + ����1 + ���C1 + ���C2 + ��	1/2 .

For St=0, this is of course equal to Jeffery’s equation for
rotation around the z axis.

B. Results

Equation �1� was integrated numerically �with K�C1 ,C2�
determined by the software package Mathematical� to give �
as a function of time. The initial condition was chosen to be
�= �̇=0. In Fig. 2�a�, the angle � is shown as a function of t
for an ellipsoid with kb=kc=0.1 and two values of St, 0.01
and 10 000. For small St, the left-hand side of Eq. �1� is
close to zero and the well-known solution of Jeffery is ob-
tained. The ellipsoid spends most of the time close to �
=N	, where N is an integer, and flips quickly with a period

FIG. 1. �Color online� Physical situation under study in �a� and
definition of the angles � and � for an oriented spheroid in �b�.
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for a full rotation of TJ. For St=10 000, on the other hand,
there is an initial transient and later, � increases linearly with
time �the ellipsoid rotates with a constant angular velocity�.
This constant angular velocity is given by the fact that the
angular acceleration of increasingly heavy particles will ap-
proach zero. The angular velocity is then given by the value
of �̇ that satisfies

�
0

2	

Mz��,�̇�d� = 0,

where Mz�� , �̇� is given analytically from Jeffery �27� �the �
dependence is the same as the right-hand side of Eq. �1��.
This gives the expected result for the rotation rate and period
TH of heavy particles,

�̇ = − 0.5, TH = 4	 .

Thus, the period of rotation �after initial transients� must de-
crease from TJ to TH as St is increased. In Fig. 2�b�, the
period of rotation T is shown as a function of St for four
aspect-ratio combinations. For each case, there is a sharp
transition, increasingly so with reduced kb, from TJ �which
varies with kb� to 4	 at a distinct range of St. The critical
value of St is different for the different aspect-ratio combi-
nations. In Fig. 3, contours of the logarithm of the transi-
tional Stokes number St0.5, defined as the Stokes number at
which T= �TJ+TH� /2, is shown for varying kb and kc. The
critical Stokes number is seen to decrease with both kb and
kc.

It can actually be demonstrated numerically that St0.5 oc-
curs when

St0.5
kc�kbK + K��

20
= 0.8, �2�

i.e., by the lumped parameter in the left-hand side of Eq. �1�
�35�. Thus, St0.5 is easily calculated for a given ellipsoid.

III. ROTATION IN THREE DIMENSIONS

It has previously been observed that particle inertia gives
a drift toward the state of rotation studied in Sec. II. We will

now study three-dimensional rotation for a wide range of St.
The formulation below is valid for all ellipsoids. For the
present scope, results for prolate spheroids will be presented.
In all calculations, the initial condition was �=0, �=�0. The
value of �0 is indicated in the figure captions.

A. Governing equations

Shivarama and Fahrenthold �30� derived a constraint-free
quaternion-based formulation of the equations of motion for
a rotating �and translating� body and the rotation part of this
formulation will be used below. The orientation of a body is
now described by a quaternion, i.e., a vector of four numbers
with norm 1,

e = �e0 e1 e2 e3 �T. �3�

The physical interpretation of the quaternion is that if the
body has been rotated by an angle � around an axis defined
by a unit vector in the inertial frame of reference, b�
= �b1� b2� b3��, the corresponding quaternion is

e = �cos��/2� b1� sin��/2� b2� sin��/2� b3� sin��/2� � .

The rotation matrix R relating a vector a� in the inertial
system to the components in the body-fixed system, a �i.e.,
a�=Ra�, is then

R = EGT, �4�

where

E = 
− e1 e0 − e3 e2

− e2 e3 e0 − e1

− e3 − e2 e1 e0
� �5�

and

G = 
− e1 e0 e3 − e2

− e2 − e3 e0 e1

− e3 e2 − e1 e0
� . �6�

Now introduce the angular-momentum vector h=J�, where
J and � are the moment-of-inertia matrix and rotational ve-

FIG. 2. �Color online� �a� Rotation angle � as a function of time
for kb=kc=0.1 and St=0.1 �blue, thin�, and St=1000 �red, thick�.
�b� Rotation period T as a function of St for kb=0.01 �green, thick�
and kb=0.1 �purple, thin� and kc=0.01 and kc=0.1 �solid and
dashed, respectively�.

FIG. 3. �Color online� Contours of the logarithm of St0.5 as a
function of kb and kc. The solid contour is 100 and the dashed
contours are 101.5, 102.5, 103, and 103.5. The thick solid line shows
the line kb=kc, which indicates prolate spheroids.
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locity vector, respectively, in the body-fixed coordinates. The
nondimensional equations of motion for an ellipsoid in
creeping shear can then be written as

ė =
1

2
GT�, ḣ = − �h +

16	

3St
T , �7�

where �=2GĠT and 16	T /3St is the nondimensional
torque, obtained from Jeffery �27�,

T = 
�K�kb + K�kc�−1��kb
2 − kc

2�D2,3 + �kb
2 + kc

2��V2,3 − �1��
�K�kc + K�−1��kc

2 − 1�D3,1 + �kc
2 + 1��V3,1 − �2��

�K + K�kb�−1��1 − kb
2�D1,2 + �1 + kb

2��V1,2 − �3��
� .

�8�

where K�=K�kc
−2 ,kb

2kc
−2� and D and V are the rates of defor-

mation and vorticity in the body-fixed system.

B. Results

1. Motion of a prolate spheroid for various St
and initial orientations

Equation �7� can be integrated numerically to yield the
orientation �in terms of e, which then gives the rotation ma-
trix R via Eq. �4�� of the ellipsoid as a function of time.
Results for kb=kc=0.1 will be reported. In Fig. 4, the end-
point trajectory is shown as a function of time for increasing
values of St in Figs. 4�a�–4�f�. Time goes from 0 to 225 �in
Fig. 4�b�, the trajectory up to t=800 is shown as a thinner,
gray line�. The projection of the end point on the x�y� and

x�z� planes are shown and the shear is indicated with arrows.
For St=100 in Fig. 4�a�, the end point is seen to move in an
almost closed circuit, similar to the Jeffery orbit at which it
was initiated. This means that the orbit parameter CB is close
to constant. As St is increased, the end point is seen to spiral
outwards, i.e., CB is increasing. In Fig. 4�b�, it is clearly seen
that this spiraling continues until the particle is rotating
around the vorticity axis.

At even higher Stokes numbers, a more dramatic ap-
proach to this rotation is seen. At St=1000, Fig. 4�d�, the end
point is seen to do two rounds of spiraling before inertia
takes the end point over to z��0 and the spheroid rotates
around a tilted axis, which is in the y�z�-plane. As time in-
creases, this axis approaches the z� axis slowly. In Figs. 4�e�
and 4�f�, it is seen that both the maximum angle and the
direction of this tilt is a function of St. Animations of St
=100, 1000, and 10 000 as well as three different initial con-
ditions are provided digitally �31�.

Since the particles do not stay in a single Jeffery orbit
forever, the value of the orbit parameter CB will vary. CB as
a function of time for the trajectories in Figs. 4�a�, 4�b�, 4�d�,
and 4�e� is shown in Fig. 5�a�. At low St �dotted and dash-
dotted curves� the particle rotation is still qualitatively simi-
lar to that described by the analysis of Jeffery �27� and CB is
only increasing very slowly. At intermediate values, there is
a close to monotonous approach to CB=1 �dash� whereas at
high St, CB oscillates between 1 and a minimum value for
every half period since the tilted rotation is fundamentally
different from the Jeffery orbits.

As the axis of rotation approaches the z� axis, the mini-
mum value of CB is seen to increase. The period of rotation
�as shown in �b�� is seen to be long �TJ� at low St. For the
intermediate case it is long at first and somewhere in be-
tween TJ and TH once the particle has reached CB=1 �this
final rotation period is the one studied in Sec. II�. Once
started, a heavy particle has a period not too far from TH, but
when the axis of rotation is tilted, the rotation period is
somewhat longer than TH �albeit shorter than TJ�.

The effect of the initial condition will also be illustrated.
In Fig. 6, the end-point trajectory is shown for St=1000 and

FIG. 4. �Color online� Trajectory of the spheroid end point
�thick black� and its projection on the x�y� and x�z� planes �red,
thin�. kb=kc=0.1, �0=	 /8 and St=100, 316, 562, 1000, 3162, and
10 000 from �a� to �f�. Time goes from 0 to 225, except for �b�
where the thinner gray extension of the trajectory shows the motion
up to t=800.

FIG. 5. �Color online� �a� Orbit parameter CB and �b� rotation
period T as a function of time. St=10 �blue, dotted�, 100 �red,
dashed�, 316 �green, dash-dotted�, 1000 �black, solid�, and 10 000
�gray, solid�.
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�0=	 /4 and 3	 /8; �0=	 /8 for the same St is shown in Fig.
4�d�. Both the absolute angle and direction of the tilt during
the transient toward CB=1 is seen to depend on the initial
condition. In Fig. 7�a� CB is shown as a function of time for
St=1000 and �0=	 /8, 	 /4, and 3	 /8. The time before the
tilted rotation starts is of course higher for low �0 than for
higher. However, the angle of the tilted axis with respect to
vorticity, at the instant when the particle enters the tilted
rotation, is varying in amplitude �and direction� with �0. As
before, the rotation period is quite long until the particle has
reached the state of tilted rotation and in this state, it is close
to TH �see Fig. 7�b��.

Figure 7�c� shows the time it takes for the minimum value
of CB during one rotation to reach 0.99, denoted t99. The
curves show t99 /TJ as a function of St for kb=kc=0.316
�thin� and 0.1 �thick� for different initial conditions �0
=	 /8, 	 /4, and 3	 /8 �solid, dashed and dash-dotted, re-
spectively�. The transitional Stokes number for fixed rotation
around the vorticity axis, St0.5, is indicated with vertical
dashed lines. The exact value of t99 is seen to depend on the
initial condition, but the range of St for which it is small is
similar for a given ellipsoid geometry. Furthermore, the
minimum of t99 is seen to be close to St0.5.

2. Quantification of the orbit drift

The observed orbit drift, i.e., that the spheroid tends to go
toward the orbit with CB=1, can be quantified by the orbit
drift parameter c� �24,32�, defined as

c� =
2 log�C�=−	/C�=−2	�

TJ
. �9�

In Fig. 8 the orbit drift parameter is shown as a function of St
for prolate spheroids with aspect ratio 2�kb=kc=0.5�. The
present data are shown as stars �blue online�. The circles �red
online� are values obtained from Yu et al. �24� for a nearly
neutrally buoyant particle ��=1.001� in fully inertial �fluid as
well as particle� simulations. In these simulations, the Rey-
nolds number is approximately equal to St since the density
ratio is almost 1.

For high St, it is clear that the present simulations with
only particle inertia strongly overpredicts the orbit drift. In
fact, Yu et al. �24� reported that the orbit drift changes direc-
tion toward lower C at Re�160. However, the orbit drift at
Re=12.8 is of the same order in our case and theirs. Unfor-
tunately, no fully inertial data has been found for even lower
Re, but a possible implementation of the results in Fig. 8 is
that at low Re, perhaps 5 or lower, particle inertia is the
dominant cause of the orbit drift in this particular case.

IV. POSSIBILITY OF EXPERIMENTAL
VERIFICATION

In order for the results above to be verified experimen-
tally, one must set up an experiment where the Stokes num-
ber is in the range of St0.5 and the Reynolds number is low
enough so that the torques given by Jeffery �27� �creeping
flow� is a good approximation of the torques on the ellipsoid.
Furthermore, the effects of sedimentation under gravity must
be small. One way to obtain such conditions experimentally
would be to use a Couette flow apparatus with two walls
moving in the opposite directions. Such a setup has been
used previously for experimental studies of particle rotation
�20,33�. In between these walls, a shear flow will be at hand.
A limited number of particles could be added and their mo-
tion tracked with cameras. Of course, the particles will move

FIG. 6. �Color online� Trajectory of the spheroid end point
�black, thick� and its projection on the x�y�- and x�z�-planes �red,
thin�. kb=kc=0.1. �a� and �b� St=1000, �0=3	 /8, and 	 /4. Time
goes from 0 to 225.

FIG. 7. �Color online� �a� Orbit parameter CB and �b� rotation
period T as a function of time for St=1000, �0=	 /8 �green, solid�,
	 /4 �red, dashed�, and 3	 /8 �black, dash-dotted�. �c� t99 for kb

=kc=0.3 �blue, thin� and 0.1 �red, thick�, �0=	 /8 �solid�, 	 /4
�dashed�, and 3	 /8 �dash-dotted�. The vertical dashed lines indicate
the value of St0.5 for the respective aspect ratio.

FIG. 8. �Color online� Orbit drift parameter c� as a function of
St for the present case without fluid inertia �blue, �� and from
simulations including fluid and particle inertia with �=1.001 by Yu
et al. �24� �red, ��. kb=kc=0.5.
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with the flow and/or due to gravity depending on parameters.
However, if the Couette apparatus is designed carefully and
the flow is in the direction of gravity, the translational veloc-
ity will be zero at some position between the walls. In this
section, we will investigate the demands in terms of gravity,
shear rate, particle size and particle density that arise if a
certain Re-St combination is to be obtained.

The critical Stokes number is fairly high for most aspect
ratios. Consequently, high-density ratios �=�e /� f are needed
if these high Stokes numbers are to be reached while the
Reynolds number is small. In an experimental context, this
means that sedimentation becomes an important factor. How-
ever, if both the Reynolds number given by the shear Re�̇

and the sedimentation, Resed=Usedl /�, are small, the transi-
tion in rotation rate as well as orbit shape should be experi-
mentally verifiable. This is possible since the equations for
the flow are linear for Re=0. Consequently, flow fields �and
the resulting forces on particles� can be superimposed. The
flow due to the sedimentation can thus be added to the solu-
tion of Jeffery and the effects modeled by Eq. �1� will be
present.

The sedimentation Reynolds number can be calculated
from the sedimentation velocity, Used. From the force on an
ellipsoid in pure translation �34�, the sedimentation speed
can be determined to be

Used =
l2kbkc��e − � f��X0 + Kg�ag

12�
,

where

X0 = �
0

� d�

��1 + ���kb + ���kc + ��	1/2 ,

and Kg=K or Kg=K� if gravity is along the x or y axis,
respectively, and ag is the acceleration of gravity.

Now, the physical limitations will be illustrated. Since �
must be large to reach St0.5, the assumption �e−� f ��� f is
valid. This gives

Resed =
Usedl

�
=

l3kbkc��X0 + Kg�ag

12�2 .

In order for the creeping-flow approximation to be valid,
both Re�̇ and Resed must be small. The necessary length and
time scales can be determined as functions of fluid viscosity
and gravity if the governing Reynolds numbers Re�̇ and
Resed are assumed to be equal �it is straightforward to let
them vary by a constant�. This mutual Reynolds number
must then be small in order for the assumptions to be valid.
From Re=Re�̇=Resed we get �after using �=St � / �̇l2�

�̇2l

ag
=

kbkc St�X0 + Kg�
12

. �10�

Note that St0.5 is a function of kb and kc as seen in Fig. 3 and
that St0.5 would be the interesting region of St for an experi-
ment. We introduce

f�kb,kc� =
kbkc St0.5�X0 + K�

12
,

f��kb,kc� =
kbkc St0.5�X0 + K��

12
,

and f is shown in Fig. 9�a�. Restricting ourselves to prolate
spheroids �kb=kc�1� computations show that 1� f / f�

�2.5, thus they are of the same order of magnitude. It is
therefore enough to consider f in the estimations below.
From Eq. �10� and the definition of Re�̇, l and �̇ become

l =
�Re ��2/3

�fag�1/3 , �̇ =
�fag�2/3

�Re ��1/3

It is seen in Fig. 9�a� that our restriction gives a value of
f around 2.5. The order of magnitude of l and �̇ will be
estimated using this value. In Fig. 9�b�, l and �̇ are shown as
functions of Re � �with f=2.5�. If the experiments are to be
done in air with a particle size of the order of mm and Re
=0.01 �Re ��1.5e−7�, Fig. 9�b� shows that a gravity of
10−4g �given by the second thinnest, green online, line� and a
shear of around 3 s−1 is needed. Such conditions could be
obtained in a sounding rocket experiment. The necessary
density ratio is determined by Re and St0.5�kb ,kc�. On earth
�the thick, blue online, lines�, micrometer sized particles
would be necessary. An alternative interpretation of Fig. 9�b�
is that it shows at what particle size and shear rate the tran-
sition from Jeffery’s solution to the rotation at constant rota-
tion rate will set in. In this context, it shows whether the
transition will be relevant in a given application.

V. DISCUSSION

Even though the present analysis is strictly valid only for
Re=0, the results give an indication of the particle motion at
high density-ratios and low Reynolds numbers. The quanti-
tative meaning of high density-ratios and low Reynolds num-
bers in this context is yet to be established. However, it is
clear that the present effects will be a function of particle
aspect ratio: for a given Re�̇, less slender particles will be
affected by particle inertia at lower density ratios compared
to more slender ones. Observe that Fig. 8 indicates that the

FIG. 9. �Color online� �a� The function f�kb ,kc�. Contours are 2
�solid�, 3, 4, 10, 20, and 25. �b� l �solid� and �̇ �dash-dotted� for
different levels magnitudes of ag, from ag=g �blue, thick� to ag

=10−6g �purple, thin� where g is the gravitational acceleration on
earth. The intermediate lines are 10−2g and 10−4g.
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results can have importance up to surprisingly high Reynolds
number and low density-ratios. Knowledge of the parameter
regions �in terms of �i� density ratio or Stokes number, �ii�
Reynolds number, and �iii� aspect ratio of the particle� where
particle and/or fluid inertia are negligible is necessary in or-
der to apply proper models for particle motion in simulations
of suspensions. The possible choices are four: �i� neglect all
inertia, �ii� neglect fluid inertia as in this study, �iii� neglect
particle inertia, and �iv� neglect no inertia. So far, the overall
literature contains only a sparse sampling of this parameter
space.

Nevertheless, the results in Sec. II together with previous
results show that there must be several regions in the Re�̇ /St
plane. Three of these are long period flipping as given by
Jeffery �low Re�̇, low St�, fast rotation �low Re�̇, high St� as
found here and very slow or no rotation �high Re�̇; low St�
�19,21,22�. The transition zones between these regions de-
pend on kb and kc and are yet to be established. One funda-
mental question is how far from the St axis �Re=0� our
results can be used as a phenomenological reference to un-
derstand the particle dynamics.

Our results also have implications on the motion of par-
ticles under influence of shear and gravity together. Broday
et al. �17� reported that particle inertia together with gravity
in the x� direction will give rise to a net migration in the y�
direction at intermediate Stokes numbers. This migration oc-
curs since �i� elongated particles sediment sideways when the
direction of gravity is not normal or parallel to the particle
director and �ii� the distribution function of � becomes non-
symmetric at intermediate Stokes numbers. Our results in
Sec. II imply that this migration will cease to exist at even
higher values of St, since the particle then rotates with con-
stant angular velocity and consequently, the distribution of �
is symmetric. Furthermore, the tilted orbits seen in Figs. 4
and 6 will give rise to a migration in the z� direction if there
is gravity along y� while the axis of rotation is tilted. If
gravity is pointing in the negative y� direction, this migration
would be toward positive z� for the orbit in Fig. 6�a� and in
the opposite direction for the orbit in Fig. 6�b�.

VI. CONCLUSIONS

The effect of particle inertia on the motion of ellipsoids in
creeping shear flow has been studied. This flow case is one
of the four basic assumptions possible �the four cases are full
inertia and neglecting particle and/or fluid inertia� when
modeling suspension flows with nonspherical particles. The
results are thus the basis for the understanding of particle
motion and orientation of particles at low Reynolds numbers
and high density-ratio.

The present assumptions are used in simulations since
they have the advantage that the particle motion can be de-
termined from a set of seven ordinary differential equations.

Thus, there is no need of a numerical flow solver for the flow
around the particles �since analytical expressions for the
torque �27� are used�. Even though the analysis is strictly
valid only for Re=0, there are indications, both from litera-
ture and from the comparison with results from Yu et al. �24�
in Fig. 8, that particle inertia alone might be sufficient to
predict the orbit drift even at Re=1 or higher. Whether the
assumption of zero fluid inertia is appropriate depends on the
particle aspect ratio, Reynolds number and Stokes number
and the full analysis of this parameter space is yet to be
performed.

Furthermore, drastic changes of the particle motion at
high St are predicted. These motions are fundamentally dif-
ferent from Jeffery orbits: the particle motion goes from kay-
aking or flipping to rotation around a fixed or almost fixed
axis. These motions will be found in applications where the
particle/fluid density ratio and shear rate are high enough for
the Stokes number to be in the range of St0.5 while the Rey-
nolds number is still small enough for fluid inertia to be
neglected. An order-of-magnitude analysis shows that these
motions can be verified experimentally under micro gravity
conditions for very low Reynolds numbers �0.01 or lower�.
However, following the previous arguing they might well
appear also at higher Reynolds numbers �order 1 or slightly
higher�. The last observation relaxes the demand of micro
gravity for the experimental verification.

Technically, the detailed conclusions on the particle mo-
tion are:

�i� for fixed rotation around the vorticity axis, the rotation
period �after initial transients� decreases from TJ to TH in a
distinct St interval around St0.5;

�ii� if the initial orientation of the major axis is not in the
x�z� plane �CB=1�, particle inertia induces a drift in the par-
ticle motion toward this plane;

�iii� the approach to CB=1 is different for low and high
values of St. For low Stokes numbers, CB increases almost
monotonously, whereas at high values of St rotation around a
tilted axis �slowly moving toward the z� axis� occurs tran-
siently.

�iv� The time it takes to reach CB�0.99, t99, depends on
initial condition, aspect ratio and Stokes number. It has a
minimum not far from St0.5 and increases with the slender-
ness of the particle.
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